Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.383
1.
BMC Infect Dis ; 24(1): 433, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38654215

BACKGROUND: Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections are a major public health problem, necessitating the administration of polymyxin E (colistin) as a last-line antibiotic. Meanwhile, the mortality rate associated with colistin-resistant K. pneumoniae infections is seriously increasing. On the other hand, importance of administration of carbapenems in promoting colistin resistance in K. pneumoniae is unknown. CASE PRESENTATION: We report a case of K. pneumoniae-related pyogenic liver abscess in which susceptible K. pneumoniae transformed into carbapenem- and colistin-resistant K. pneumoniae during treatment with imipenem. The case of pyogenic liver abscess was a 50-year-old man with diabetes and liver transplant who was admitted to Abu Ali Sina Hospital in Shiraz. The K. pneumoniae isolate responsible for community-acquired pyogenic liver abscess was isolated and identified. The K. pneumoniae isolate was sensitive to all tested antibiotics except ampicillin in the antimicrobial susceptibility test and was identified as a non-K1/K2 classical K. pneumoniae (cKp) strain. Multilocus sequence typing (MLST) identified the isolate as sequence type 54 (ST54). Based on the patient's request, he was discharged to continue treatment at another center. After two months, he was readmitted due to fever and progressive constitutional symptoms. During treatment with imipenem, the strain acquired blaOXA-48 and showed resistance to carbapenems and was identified as a multidrug resistant (MDR) strain. The minimum inhibitory concentration (MIC) test for colistin was performed by broth microdilution method and the strain was sensitive to colistin (MIC < 2 µg/mL). Meanwhile, on blood agar, the colonies had a sticky consistency and adhered to the culture medium (sticky mucoviscous colonies). Quantitative real-time PCR and biofilm formation assay revealed that the CRKP strain increased capsule wzi gene expression and produced slime in response to imipenem. Finally, K. pneumoniae-related pyogenic liver abscess with resistance to a wide range of antibiotics, including the last-line antibiotics colistin and tigecycline, led to sepsis and death. CONCLUSIONS: Based on this information, can we have a theoretical hypothesis that imipenem is a promoter of resistance to carbapenems and colistin in K. pneumoniae? This needs more attention.


Anti-Bacterial Agents , Carbapenems , Colistin , Klebsiella Infections , Klebsiella pneumoniae , Liver Abscess, Pyogenic , Microbial Sensitivity Tests , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Male , Liver Abscess, Pyogenic/microbiology , Liver Abscess, Pyogenic/drug therapy , Middle Aged , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Multilocus Sequence Typing , Imipenem/therapeutic use , Imipenem/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics
2.
Antimicrob Agents Chemother ; 68(5): e0169823, 2024 May 02.
Article En | MEDLINE | ID: mdl-38567976

Acinetobacter baumannii-calcoaceticus complex (ABC) causes severe, difficult-to-treat infections that are frequently antibiotic resistant. Sulbactam-durlobactam (SUL-DUR) is a targeted ß-lactam/ß-lactamase inhibitor combination antibiotic designed to treat ABC infections, including those caused by multidrug-resistant strains. In a global, pathogen-specific, randomized, controlled phase 3 trial (ATTACK), the efficacy and safety of SUL-DUR were compared to colistin, both dosed with imipenem-cilastatin as background therapy, in patients with serious infections caused by carbapenem-resistant ABC. Results from ATTACK showed that SUL-DUR met the criteria for non-inferiority to colistin for the primary efficacy endpoint of 28-day all-cause mortality with improved clinical and microbiological outcomes compared to colistin. This report describes the characterization of the baseline ABC isolates from patients enrolled in ATTACK, including an analysis of the correlation of microbiological outcomes with SUL-DUR MIC values and the molecular drivers of SUL-DUR resistance.


Acinetobacter Infections , Acinetobacter baumannii , Anti-Bacterial Agents , Colistin , Microbial Sensitivity Tests , Sulbactam , Humans , Acinetobacter baumannii/drug effects , Sulbactam/therapeutic use , Sulbactam/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Colistin/pharmacology , Colistin/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Drug Resistance, Multiple, Bacterial , Acinetobacter calcoaceticus/drug effects , Acinetobacter calcoaceticus/genetics , Cilastatin, Imipenem Drug Combination/therapeutic use , Male
3.
Ulus Travma Acil Cerrahi Derg ; 30(3): 221-225, 2024 Mar.
Article En | MEDLINE | ID: mdl-38506388

A. baumannii, which is said to be associated with nosocomial infections is considered a significant mortality risk if not adequately addressed. A. baumannii infections typically occur in the aftermath of surgery or trauma. Our patient developed complicated A. baumannii meningitis with lateral ventriculitis and a lumbar abscess post surgery after suffering from a fall. The patient was treated with a 21-day regimen of intrathecally administered colistin and polymyxin B. Following this therapeutic period, the patient's condition improved, ultimately leading to successful recovery and subsequent discharge. This case report serves to highlight the ability of intrathecal administration of antibiotics, that normally have limited potential of crossing the blood-brain-barrier, to lead to improved survival outcomes in multi-drug resistant nosocomial meningitis.


Acinetobacter Infections , Acinetobacter baumannii , Meningitis, Bacterial , Humans , Meningitis, Bacterial/drug therapy , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/therapeutic use , Colistin/therapeutic use
4.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Article En | MEDLINE | ID: mdl-38541237

Background and Objective: Klebsiella pneumoniae appears to be a significant problem due to its ability to accumulate antibiotic-resistance genes. After 2013, alarming colistin resistance rates among carbapenem-resistant K. pneumoniae have been reported in the Balkans. The study aims to perform an epidemiological, clinical, and genetic analysis of a local outbreak of COLr CR-Kp. Material and Methods: All carbapenem-resistant and colistin-resistant K. pneumoniae isolates observed among patients in the ICU unit of Military Medical Academy, Sofia, from 1 January to 31 October 2023, were included. The results were analyzed according to the EUCAST criteria. All isolates were screened for blaVIM, blaIMP, blaKPC, blaNDM, and blaOXA-48. Genetic similarity was determined using the Dice coefficient as a similarity measure and the unweighted pair group method with arithmetic mean (UPGMA). mgrB genes and plasmid-mediated colistin resistance determinants (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) were investigated. Results: There was a total of 379 multidrug-resistant K. pneumoniae isolates, 88% of which were carbapenem-resistant. Of these, there were nine (2.7%) colistin-resistant isolates in six patients. A time and space cluster for five patients was found. Epidemiology typing showed that two isolates belonged to clone A (pts. 1, 5) and the rest to clone B (pts. 2-4) with 69% similarity. Clone A isolates were coproducers of blaNDM-like and blaOXA-48-like and had mgrB-mediated colistin resistance (40%). Clone B isolates had only blaOXA-48-like and intact mgrB genes. All isolates were negative for mcr-1, -2, -3, -4, and -5 genes. Conclusions: The study describes a within-hospital spread of two clones of COLr CR-Kp with a 60% mortality rate. Clone A isolates were coproducers of NDM-like and OXA-48-like enzymes and had mgrB-mediated colistin resistance. Clone B isolates had only OXA-48-like enzymes and intact mgrB genes. No plasmid-mediated resistance was found. The extremely high mortality rate and limited treatment options warrant strict measures to prevent outbreaks.


Colistin , Klebsiella Infections , Humans , Colistin/pharmacology , Colistin/therapeutic use , Klebsiella pneumoniae/genetics , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/therapeutic use , Hospitals , beta-Lactamases/genetics
5.
J Infect Public Health ; 17(5): 727-734, 2024 May.
Article En | MEDLINE | ID: mdl-38513335

BACKGROUND: Carbapenem-resistant Enterobacteriaceae (CRE) infections pose a significant threat to global health due to limited treatment options and high mortality rates. Colistin-based regimens have emerged as a primary treatment approach, but the effectiveness and mortality outcomes of colistin monotherapy versus colistin-fosfomycin combination therapy remain uncertain. This study aims to compare the effectiveness and mortality of colistin monotherapy and colistin-fosfomycin combination therapy for CRE infections. Notably, our study is the first to undertake a comprehensive examination of the effectiveness and mortality outcomes between colistin monotherapy and colistin-fosfomycin combination therapy in the context of CRE infections. METHODS: A retrospective cohort study was conducted using data from patients diagnosed with carbapenem-resistant Enterobacteriaceae (CRE) infections at Nakornping Hospital during 2015 to 2022. Inverse probability weighting (IPW) was employed to create balanced cohorts of patients receiving either colistin monotherapy or colistin-fosfomycin combination therapy. The primary outcome measure was treatment effectiveness, assessed by 30-day mortality. Secondary outcome measures included clinical response, mortality at the end of treatment, and microbiologic response. Univariate and multivariate logistic regression analysis were employed after applying propensity score weighting using inverse probability of weighting (IPW). RESULTS: A total of 220 patients were included in the analysis, with 67 receiving colistin monotherapy and 153 receiving colistin-fosfomycin combination therapy. Propensity score weighting using IPW balanced the baseline characteristics between the two groups. The effectiveness of treatment, as measured by 30-day mortality, was not significantly different between the colistin monotherapy group and the colistin-fosfomycin combination therapy group (adjusted odds ratio [aOR] = 1.51, 95% confidence interval [CI]: 0.60-3.78, p = 0.383). Similarly, no significant difference was observed in the mortality at the end of treatment between the two groups (aOR = 1.26, 95% CI: 0.55-2.90, p = 0.576). The clinical response (aOR = 1.48, 95% CI: 0.61-3.59, p = 0.383) and microbiologic response (aOR = 0.66, 95% CI: 0.18-2.38, p = 0.527) were similar between the colistin monotherapy and colistin-fosfomycin combination therapy groups. CONCLUSION: The propensity score analysis among 220 matched patients showed comparable treatment effectiveness and mortality between colistin monotherapy and colistin-fosfomycin combination therapy for CRE infections. These results suggest that colistin monotherapy may be as effective as combination therapy. More prospective randomized controlled trials are needed to confirm these findings and establish optimal CRE treatment strategies.


Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Fosfomycin , Humans , Colistin/therapeutic use , Fosfomycin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Propensity Score , Prospective Studies , Retrospective Studies , Enterobacteriaceae Infections/microbiology
6.
J Infect Public Health ; 17(5): 774-779, 2024 May.
Article En | MEDLINE | ID: mdl-38518683

BACKGROUND: Acinetobacter baumannii, a common carbapenem-resistant gram-negative bacillus, usually causes nosocomial infections. Colistin has been used for carbapenem-resistant A. baumannii (CRAB) infections; however, only a few studies have evaluated colistin as a treatment option compared to appropriate controls. We investigated the effectiveness of colistin monotherapy in treating CRAB pneumonia compared to those treated without an active drug. METHODS: Adult patients (≥ 18 years) with CRAB isolated from respiratory specimens were screened from September 2017 to August 2022. Only patients with pneumonia treated with colistin monotherapy (colistin group) were included and compared to those without any active antibiotics (no active antibiotics [NAA] group). The primary and secondary outcomes were 30-day all-cause mortality and acute kidney injury within 30 days. The inverse probability of the treatment-weighted Cox proportional hazard model was used to compare mortality between groups. RESULTS: Among the 826 adult patients with CRAB in their respiratory specimens, 45 and 123 patients were included in the colistin and NAA groups, respectively. Most of the CRAB pneumonia (91.1%) cases were hospital-acquired pneumonia. The 30-day all-cause mortality rates in the colistin and NAA groups were 58.3% and 56.1%, respectively, and no difference was observed after adjustments (adjusted hazard ratio, 0.74; 95% CI, 0.47-1.17). The incidence of acute kidney injury was higher in the colistin group (65.3%) compared to the NAA group (39.0%) (P = 0.143). CONCLUSIONS: Colistin monotherapy did not significantly improve treatment outcomes for CRAB pneumonia. The development and evaluation of new antimicrobials for CRAB pneumonia should be advocated in clinical practice.


Acinetobacter Infections , Acinetobacter baumannii , Acute Kidney Injury , Pneumonia , Adult , Humans , Colistin/therapeutic use , Cohort Studies , Retrospective Studies , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents , Carbapenems/therapeutic use , Pneumonia/drug therapy , Acute Kidney Injury/chemically induced
7.
Sci Rep ; 14(1): 5148, 2024 03 01.
Article En | MEDLINE | ID: mdl-38429351

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Moths , Salmonella Infections , Animals , Colistin/pharmacology , Colistin/therapeutic use , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Salmonella Infections/drug therapy , Microbial Sensitivity Tests
8.
Arch Microbiol ; 206(4): 169, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489041

Acinetobacter baumannii is an opportunistic pathogen that is responsible for nosocomial infections. Imipenem and colistin are drugs that are commonly used to treat severe infections caused by A. baumannii, such as sepsis, ventilator-associated pneumonia, and bacteremia. However, some strains of A. baumannii have become resistant to these drugs, which is a concern for public health. Biofilms produced by A. baumannii increase their resistance to antibiotics and the cells within the inner layers of biofilm are exposed to sub-inhibitory concentrations (sub-MICs) of antibiotics. There is limited information available regarding how the genes of A. baumannii are linked to biofilm formation when the bacteria are exposed to sub-MICs of imipenem and colistin. Thus, this study's objective was to explore this relationship by examining the genes involved in biofilm formation in A. baumannii when exposed to low levels of imipenem and colistin. The study found that exposing an isolate of A. baumannii to low levels of these drugs caused changes in their drug susceptibility pattern. The relative gene expression profiles of the biofilm-associated genes exhibited a change in their expression profile during short-term and long-term exposure. This study highlights the potential consequences of overuse and misuse of antibiotics, which can help bacteria become resistant to these drugs.


Acinetobacter Infections , Acinetobacter baumannii , Humans , Imipenem/pharmacology , Imipenem/therapeutic use , Colistin/pharmacology , Colistin/therapeutic use , Acinetobacter baumannii/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
9.
J Glob Antimicrob Resist ; 36: 411-418, 2024 Mar.
Article En | MEDLINE | ID: mdl-38331030

OBJECTIVES: To evaluate the susceptibility of globally pneumonia-causing meropenem-resistant (MEM-R) Acinetobacter baumannii isolates against important antibiotics and estimate appropriate dosages of indicated antibiotics. METHODS: We extracted the 2014-2021 Antimicrobial Testing of Leadership Surveillance database regarding the susceptibility of MEM-R A. baumannii isolates causing pneumonia against important antibiotics. The susceptibility and carbapenemase-encoding gene (CPEG) data of pneumonia-causing MEM-R A. baumannii isolates from patients hospitalized in intensive care units of five major regions were analyzed. The susceptibility breakpoints (SBP) recommended by the Clinical and Laboratory Standards Institute (CLSI) in 2022, other necessary criteria [SBP of MIC for colistin, 2 mg/L, in the CLSI 2018; and cefoperazone-sulbactam (CFP-SUL), 16 mg/L], and the pharmacokinetic and pharmacodynamic data of indicated antibiotics were employed. RESULTS: Applying the aforementioned criteria, we observed the susceptible rates of colistin, minocycline, and CFP-SUL against the pneumonia-causing MEM-R A. baumannii isolates globally (n = 2905) were 93.2%, 69.1%, and 26.3%, respectively. Minocycline was significantly more active in vitro (MIC ≤4 mg/L) against the pneumonia-causing MEM-R A. baumannii isolates collected from North and South America compared to those from other regions (>90% vs. 58-72%). Additionally, blaOXA-23 and blaOXA-72 were the predominant CPEG in pneumonia-causing MEM-R A. baumannii isolates. CONCLUSIONS: After deliberative estimations, dosages of 200 mg minocycline intravenously every 12 h (SBP, 8 mg/L), 100 mg tigecycline intravenously every 12 h (SBP, 1 mg/L), and 160 mg nebulized colistin methanesulphonate every 8 h (SBP, 2 mg/L) are needed for the effective treatment of pneumonia-causing MEM-R A. baumannii isolates.


Acinetobacter Infections , Acinetobacter baumannii , Anti-Infective Agents , Pneumonia , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Meropenem/pharmacology , Meropenem/therapeutic use , Minocycline/pharmacology , Colistin/pharmacology , Colistin/therapeutic use , Leadership , Drug Resistance, Multiple, Bacterial , Acinetobacter Infections/drug therapy , Anti-Infective Agents/pharmacology , Pneumonia/drug therapy
10.
J Microbiol Immunol Infect ; 57(2): 300-308, 2024 Apr.
Article En | MEDLINE | ID: mdl-38350840

PURPOSES: This study determined the synergy of polymyxin B (POLB) and colistin (COL) with 16 other tested antimicrobial agents in the inhibition of multidrug-resistant Acinetobacter baumannii (MDR-AB). METHODS: We used chequerboard assays to determine synergy between the drugs against 50 clinical MDR-AB from a tertiary hospital in the Zhejiang province in 2019, classifying combinations as either antagonistic, independent, additive, or synergistic. The efficacy of hit combinations which showed highest synergistic rate were confirmed using time-kill assays. RESULTS: Both POLB and COL displayed similar bactericidal effects when used in combination with these 16 tested drugs. Antagonism was only observed for a few strains (2%) exposed to a combination of POLB and cefoperazone/sulbactam (CSL). A higher percentage of synergistic combinations with POLB and COL were observed with rifabutin (RFB; 90%/96%), rifampicin (RIF; 60%/78%) and rifapentine (RFP; 56%/76%). Time-kill assays also confirmed the synergistic effect of POLB and rifamycin class combinations. 1/2 MIC rifamycin exposure can achieve bacterial clearance when combined with 1/2 MIC POLB or COL. CONCLUSION: Nearly no antagonism was observed when combining polymyxins with other drugs by both chequerboard and time-kill assays, suggesting that polymyxins may be effective in combination therapy. The combinations of POLB/COL with RFB, RIF, and RFP displayed neat synergy, with RFB showing the greatest effect.


Acinetobacter Infections , Acinetobacter baumannii , Humans , Colistin/pharmacology , Colistin/therapeutic use , Polymyxin B/pharmacology , Drug Synergism , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
11.
Drug Resist Updat ; 73: 101061, 2024 Mar.
Article En | MEDLINE | ID: mdl-38301486

AIMS: Antimicrobial resistance is a global threat to human health, and Acinetobacter baumannii is a paradigmatic example of how rapidly bacteria become resistant to clinically relevant antimicrobials. The emergence of multidrug-resistant A. baumannii strains has forced the revival of colistin as a last-resort drug, suddenly leading to the emergence of colistin resistance. We investigated the genetic and molecular basis of colistin resistance in A. baumannii, and the mechanisms implicated in its regulation and dissemination. METHODS: Comparative genomic analysis was combined with genetic, biochemical, and phenotypic assays to characterize Φ19606, an A. baumannii temperate bacteriophage that carries a colistin resistance gene. RESULTS: Ф19606 was detected in 41% of 523 A. baumannii complete genomes and demonstrated to act as a mobile vehicle of the colistin resistance gene eptA1, encoding a functional lipid A phosphoethanolamine transferase. The eptA1 gene is coregulated with its chromosomal homolog pmrC via the PmrAB two-component system and confers colistin resistance when induced by low calcium and magnesium levels. Resistance selection assays showed that the eptA1-harbouring phage Ф19606 promotes the emergence of spontaneous colistin-resistant mutants. CONCLUSIONS: Φ19606 is an unprecedented example of a self-transmissible phage vector implicated in the dissemination of colistin resistance.


Acinetobacter Infections , Acinetobacter baumannii , Humans , Colistin/pharmacology , Colistin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Acinetobacter baumannii/genetics , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics
12.
PLoS One ; 19(2): e0298096, 2024.
Article En | MEDLINE | ID: mdl-38394276

BACKGROUND: Colistin serves as the last line of defense against multidrug resistant Gram-negative bacterial infections in both human and veterinary medicine. This study aimed to investigate the occurrence and spread of colistin-resistant Enterobacterales (ColR-E) using a One Health approach in Belgium and in the Netherlands. METHODS: In a transnational research project, a total of 998 hospitalized patients, 1430 long-term care facility (LTCF) residents, 947 children attending day care centres, 1597 pigs and 1691 broilers were sampled for the presence of ColR-E in 2017 and 2018, followed by a second round twelve months later for hospitalized patients and animals. Colistin treatment incidence in livestock farms was used to determine the association between colistin use and resistance. Selective cultures and colistin minimum inhibitory concentrations (MIC) were employed to identify ColR-E. A combination of short-read and long-read sequencing was utilized to investigate the molecular characteristics of 562 colistin-resistant isolates. Core genome multi-locus sequence typing (cgMLST) was applied to examine potential transmission events. RESULTS: The presence of ColR-E was observed in all One Health sectors. In Dutch hospitalized patients, ColR-E proportions (11.3 and 11.8% in both measurements) were higher than in Belgian patients (4.4 and 7.9% in both measurements), while the occurrence of ColR-E in Belgian LTCF residents (10.2%) and children in day care centres (17.6%) was higher than in their Dutch counterparts (5.6% and 12.8%, respectively). Colistin use in pig farms was associated with the occurrence of colistin resistance. The percentage of pigs carrying ColR-E was 21.8 and 23.3% in Belgium and 14.6% and 8.9% in the Netherlands during both measurements. The proportion of broilers carrying ColR-E in the Netherlands (5.3 and 1.5%) was higher compared to Belgium (1.5 and 0.7%) in both measurements. mcr-harboring E. coli were detected in 17.4% (31/178) of the screened pigs from 7 Belgian pig farms. Concurrently, four human-related Enterobacter spp. isolates harbored mcr-9.1 and mcr-10 genes. The majority of colistin-resistant isolates (419/473, 88.6% E. coli; 126/166, 75.9% Klebsiella spp.; 50/75, 66.7% Enterobacter spp.) were susceptible to the critically important antibiotics (extended-spectrum cephalosporins, fluoroquinolones, carbapenems and aminoglycosides). Chromosomal colistin resistance mutations have been identified in globally prevalent high-risk clonal lineages, including E. coli ST131 (n = 17) and ST1193 (n = 4). Clonally related isolates were detected in different patients, healthy individuals and livestock animals of the same site suggesting local transmission. Clonal clustering of E. coli ST10 and K. pneumoniae ST45 was identified in different sites from both countries suggesting that these clones have the potential to spread colistin resistance through the human population or were acquired by exposure to a common (food) source. In pig farms, the continuous circulation of related isolates was observed over time. Inter-host transmission between humans and livestock animals was not detected. CONCLUSIONS: The findings of this study contribute to a broader understanding of ColR-E prevalence and the possible pathways of transmission, offering insights valuable to both academic research and public health policy development.


Escherichia coli Proteins , One Health , Child , Humans , Animals , Swine , Colistin/pharmacology , Colistin/therapeutic use , Belgium/epidemiology , Escherichia coli/genetics , Netherlands/epidemiology , Chickens/genetics , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics
13.
Antimicrob Resist Infect Control ; 13(1): 24, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38419112

INTRODUCTION: The development of colistin resistance in Acinetobacter baumannii during treatment has been identified in certain patients, often leading to prolonged or recurrent infections. As colistin, is the last line of therapy for A. baumannii infections that are resistant to almost all other antibiotics, colistin-resistant A. baumannii strains currently represent a significant public health threat, particularly in healthcare settings where there is significant selective pressure. AIM: The aim of this study was to comprehensively determine the prevalence of colistin resistance in A. baumannii from clinical samples. Regional differences in these rates were also investigated using subgroup analyses. METHOD: The comprehensive search was conducted using "Acinetobacter baumannii", "Colistin resistant" and all relevant keywords. A systematic literature search was performed after searching in PubMed, Embase, Web of Science, and Scopus databases up to April 25, 2023. Statistical analysis was performed using Stata software version 17 and sources of heterogeneity were evaluated using I2. The potential for publication bias was explored using Egger's tests. A total of 30,307 articles were retrieved. After a thorough evaluation, 734 studies were finally eligible for inclusion in the present systematic review and meta-analysis. RESULT: According to the results, the prevalence of resistance to colistin among A. baumannii isolates was 4% (95% CI 3-5%), which has increased significantly from 2% before 2011 to 5% after 2012. South America had the highest resistance rate to this antibiotic. The broth microdilution method had the highest level of resistance, while the agar dilution showed the lowest level. CONCLUSIONS: This meta-analysis found a low prevalence of colistin resistance among A. baumannii isolates responsible for infections worldwide from 2000 to 2023. However, there is a high prevalence of colistin-resistant isolates in certain countries. This implies an urgent public health threat, as colistin is one of the last antibiotics available for the treatment of infections caused by XDR strains of A. baumannii.


Acinetobacter Infections , Acinetobacter baumannii , Humans , Colistin/pharmacology , Colistin/therapeutic use , Prevalence , Acinetobacter Infections/epidemiology , Acinetobacter Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
14.
BMC Infect Dis ; 24(1): 161, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38317132

BACKGROUND: Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS: Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS: Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS: Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION: retrospectively registered.


Klebsiella Infections , Sepsis , Humans , Colistin/therapeutic use , Anti-Bacterial Agents/therapeutic use , Tigecycline/therapeutic use , Klebsiella pneumoniae , Carbapenems/therapeutic use , Sepsis/drug therapy , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests
15.
Curr Opin Infect Dis ; 37(2): 137-143, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38179988

PURPOSE OF REVIEW: The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS: In a multicenter, randomized, and controlled trial the novel ß-lactam-ß-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY: CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.


Acinetobacter Infections , Acinetobacter baumannii , Pneumonia , Humans , Anti-Bacterial Agents , Colistin/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Acinetobacter Infections/drug therapy , beta-Lactamase Inhibitors/therapeutic use , Pneumonia/drug therapy , Microbial Sensitivity Tests , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
16.
J Infect Public Health ; 17(3): 430-434, 2024 Mar.
Article En | MEDLINE | ID: mdl-38262080

BACKGROUND: Morganella morganii is a Gram-negative, opportunistic pathogen that can cause a variety of infections, including bloodstream infections, especially in those with compromised immune systems. It is often resistant to antibiotics, making it a difficult organism to treat. Limited studies have addressed M. morganii, but the organism is becoming increasingly recognized as a public health threat. More research is needed to understand the epidemiology and virulence factors of M. morganii in Saudi Arabia, as well as to develop effective treatment strategies. METHODS: This retrospective study included all M. morganii bloodstream infections patients admitted to five tertiary care hospitals in Saudi Arabia between 2015 and 2022. RESULTS: The study population included 75 patients (45 males and 30 females) between the age of 53-72 with a 54% ICU admission rate. The most comorbidities were hypertension followed by diabetes. The most common symptoms were fever, cough, shortness of breath, vomiting, and fatigue. The study also found that M. morganii was often resistant to multiple antibiotics, including ciprofloxacin, trimethoprim/sulfamethoxazole, gentamicin, amoxicillin, nitrofurantoin, and colistin. The most common treatment for M. morganii bacteremia was carbapenems, followed by aminoglycosides, ciprofloxacin, and colistin. Source control measures, such as surgery, line removal, drainage, and tissue removal, were also used in some cases. The study found that the in-hospital mortality rate for M. morganii bacteremia was 41%. The risk of mortality was increased in patients who were admitted to the ICU, who were older than 65 years, and who had Klebsiella pneumoniae co-infection. CONCLUSION: M. morganii bacteremia is a serious infection that is often resistant to antibiotics. Elderly patients and patients with comorbidities are at increased risk of mortality. Source control measures and appropriate antibiotic therapy are important for improving outcomes.


Bacteremia , Enterobacteriaceae Infections , Morganella morganii , Sepsis , Male , Female , Humans , Aged , Retrospective Studies , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Colistin/therapeutic use , Microbial Sensitivity Tests , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/epidemiology , Ciprofloxacin
17.
J Glob Antimicrob Resist ; 36: 436-443, 2024 Mar.
Article En | MEDLINE | ID: mdl-37931688

OBJECTIVES: Klebsiella pneumoniae is an important opportunistic Gram-negative pathogen. This study describes an outbreak due to colistin-resistant and carbapenem-resistant Klebsiella pneumoniae (ColR-CRKP) in a tertiary hospital related to six patients successively admitted to the department of medical intensive care unit (MICU) between March 11 and April 29, 2021. METHODS: Phenotypic characterization was conducted on 16 ColR-CRKP strains obtained from six infected patients and five ColR-CRKP strains isolated from 48 environmental samples, followed by whole-genome sequencing (WGS) and polymerase chain reaction (PCR) analysis. RESULTS: All ColR-CRKP strains showed resistance to commonly used antibiotics. Whole-genome sequencing revealed a variety of resistance genes such as blaKPC-2, blaCTX-M-65, and blaTEM-4 present in all strains, which is consistent with their antimicrobial resistance profile. All isolates were identified as the high-risk sequence type 11 (ST11) clonal lineage by multilocus sequencing typing (MLST) and subsequently clustered into a single clonal type by core genome MLST (cgMLST). IS5-like element ISKpn26 family transposase insertion mutations at positions 74 nucleotides in the mgrB gene were the main cause of colistin resistance in these ColR-CRKP. The variations of genes were verified by PCR. SCOTTI analysis demonstrated the transmission pathway of the ColR-CRKP between the patients. CONCLUSION: Our study highlights the importance of coordinated efforts between clinical microbiologists and infection control teams to implement aggressive surveillance cultures and proper bacterial genotyping to diagnose nosocomial infections and take control measures. Routine surveillance and the use of advanced sequencing technologies should be implemented to enhance nosocomial infection control and prevention measures.


Bacterial Proteins , Carbapenem-Resistant Enterobacteriaceae , Cross Infection , beta-Lactamases , Humans , Colistin/pharmacology , Colistin/therapeutic use , Klebsiella pneumoniae/genetics , Carbapenems/therapeutic use , Multilocus Sequence Typing , Cross Infection/epidemiology , Cross Infection/microbiology , Disease Outbreaks , Intensive Care Units , Tertiary Care Centers
18.
Antimicrob Agents Chemother ; 68(1): e0129823, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38092672

Murepavadin is a peptidomimetic exhibiting specific inhibitory activity against Pseudomonas species. In the present study, its in vitro activity was assessed on 230 cystic fibrosis (CF) strains of Pseudomonas aeruginosa isolated from 12 French hospitals, in comparison with 12 other antipseudomonal antibiotics. Although murepavadin is still in preclinical stage of development, 9.1% (n = 21) of strains had a minimum inhibitory concentration (MIC) >4 mg/L, a level at least 128-fold higher than the modal MIC value of the whole collection (≤0.06 mg/L). Whole-genome sequencing of these 21 strains along with more susceptible isogenic counterparts coexisting in the same patients revealed diverse mutations in genes involved in the synthesis (lpxL1 and lpxL2) or transport of lipopolysaccharides (bamA, lptD, and msbA), or encoding histidine kinases of two-component systems (pmrB and cbrA). Allelic replacement experiments with wild-type reference strain PAO1 confirmed that alteration of genes lpxL1, bamA, and/or pmrB can decrease the murepavadin susceptibility from 8- to 32-fold. Furthermore, we found that specific amino acid substitutions in histidine kinase PmrB (G188D, Q105P, and D45E) reduce the susceptibility of P. aeruginosa to murepavadin, colistin, and tobramycin, three antibiotics used or intended to be used (murepavadin) in aerosols to treat colonized CF patients. Whether colistin or tobramycin may select mutants resistant to murepavadin or the opposite needs to be addressed by clinical studies.


Cystic Fibrosis , Pseudomonas Infections , Humans , Colistin/pharmacology , Colistin/therapeutic use , Pseudomonas aeruginosa , Cystic Fibrosis/drug therapy , Respiratory Aerosols and Droplets , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas Infections/complications , Tobramycin/pharmacology , Mutation/genetics , Microbial Sensitivity Tests
19.
Int J Antimicrob Agents ; 63(1): 107011, 2024 Jan.
Article En | MEDLINE | ID: mdl-37863340

OBJECTIVES: Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS: Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS: The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION: Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.


Colistin , Klebsiella Infections , Animals , Colistin/pharmacology , Colistin/therapeutic use , Klebsiella pneumoniae , Virulence , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Larva , Microbial Sensitivity Tests , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology
...